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Abstract

We propose new accurate efficient modeling techniques for the vibration analysis of T-joint thin-walled box struc-

tures. The essence of the present techniques is to use beam elements to model thin-walled members of the joint, but the

elements are based on an eight-degree-of-freedom (8-DOF) beam theory capable of handling warping and distortion.

Two approaches are considered to model the interfacing joint region connected to three adjacent thin-walled box

structures: the first one is to model the joint region with plate elements and the second one is to use a joint element

derived to be consistent with nearby 8-DOF beam elements. The efficiency of the present techniques comes from the use

of beam elements to model the box structures while the accuracy comes from the use of the higher-order beam theory

accounting for warping and distortion. The procedures to match the dissimilar elements and to develop the joint el-

ement are also presented in this work. The effectiveness of the present approaches is demonstrated by numerical ex-

amples. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Thin-walled beams are widely used in many applications—aerospace, modern architecture, and me-
chanical structures because of their high rigidity and lightweightness. Recent manufacturing technology
allows the use of thin-walled beams with various shapes. Therefore, the optimization and analysis of these
structures has been a challenging topic.
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Many thin-walled beam theories are based on the classical work by Vlasov (1961). Focusing our at-
tention to the analysis of joints of thin-walled structures, most investigations were mainly concerned with
the estimation of joint flexibility. Chang (1974) demonstrated the significance of the flexibility of car body
connections by examining static structural responses. Lubkin (1974) treated a tubular welded joint of a
vehicle frame. Garro and Vullo (1986) analyzed the dynamic behavior of typical body joints under two
typical actual load conditions. They addressed that the plates along weld spots tend to detach from each
other when joint deformations occur. Lee and Nikolaidis (1992) proposed a two-dimensional joint model in
order to consider joint flexibility, the offset of rotation centers, and coupling effects between the movement
of joint branches.

Sunami et al. (1988, 1990) studied the behavior of isolated T- and L-shaped box beams and discussed the
significance of shear deformation. El-sayed (1989) calculated the torsional spring rates of structural joints
using finite elements. Balch and Steele (1987) performed an asymptotic analysis for T-joint box beam
structures. They discussed the decay distance of end effects of thin-walled box beams. Altenbach (1991) and
Altenbach et al. (1994) present a generalized theory of thin-walled beams with closed and open cross-
sections using n degrees of freedom. The theoretical framework allows the solution of various application
problems including T-joint box beam structures and vibrations.

Through many investigations including those cited above, the importance of joint flexibility has been
now well recognized, and most practical modeling techniques take the additional flexibility into account
using artificial stiffness at the joint area whereas the adjacent structures are modeled by beam elements. Kim
et al. (1995) have investigated the practicality of using spring or equivalent beam elements in considering
the flexibility. Particularly for vibration analysis, existing modeling techniques using beams and joint ele-
ments do not predict accurately the structural behaviors of a joint even for a relatively low frequency range.
The main reason for this behavior is that conventional beam elements are not capable of handling warping
and distortion that affect significantly the joint flexibility particularly for dynamic situations. To overcome
the limitation of the existing beam element-based modeling techniques, we propose new modeling tech-
niques valid for both static and dynamic cases, but with an emphasis on dynamic cases. The essence of the
proposed modeling techniques is to employ an eight-degree-of-freedom (8-DOF) beam theory having
warping and distortion degrees in addition to conventional six degrees of freedom.

In this work, thin-walled box structures adjacent to a joint region are modeled by the 8-DOF beam
theory while the joint region is modeled by two approaches. The first approach is to model the joint region
with plate elements. To connect dissimilar plate and beam elements at the interface, we employ a technique
based on a pseudo-inverse matrix. The second approach is to model the joint region with a joint element
derived to be consistent with 8-DOF beam elements. To estimate the stiffness of the joint element, we
impose the deformation pattern expressed by the 8-DOF beam theory on the interfaces of the joint area
modeled by plate elements and calculate the reaction forces on all the interfaces encompassing the joint
region.

Numerical results show an excellent agreement between the present predictions and those by the detailed
plate finite element analysis. Although the present investigation is limited to box beams, the present method
can be extended to handle joints consisting of complicated cross-sections, and thus will be expected to play
an important role in an early structural design such as an initial automobile body design.

2. Eight-degree-of-freedom thin-walled box beam theory

The underlying difference of the present modeling technique with existing modeling techniques of a T-
joint structure is to use a higher-order beam theory including warping and distortional deformations.

Kim and Kim (1999a, 2000) have developed a one-dimensional beam theory to deal with coupled de-
formations of torsion, warping and distortion in thin-walled general sectioned beams. By including ex-
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tensional and flexural deformations in addition to the coupled deformations, an 8-DOF one-dimensional
thin-walled box beam theory is derived here.

Fig. 1 shows the geometry of a thin-walled beam having a rectangular cross-section. It is assumed that
the wall thickness t is much smaller than the beam length. The tangential coordinate s is measured along the
contour of the cross-section, and different origins are used for each wall. The normal coordinate n directs
outwards from the contour. The displacements of a point on the middle line of the wall are expressed in
terms of the normal un, tangential us and axial uz components as indicated in Fig. 1.

Eight degrees of freedom considered in the present theory consist of three translations (u, v, w) along x-,
y-, z-axes, three rotations (hx, hy , hz) about x-, y-, z-axes, warping x and distortion v. The corresponding
deformations of the section contour are depicted in Fig. 2.

Denoting the section deformations of the contour by wðsÞ, the shell displacements of the contour can be
written as

usðs; zÞ ¼ wu
s ðsÞuðzÞ þ wv

sðsÞvðzÞ þ whz
s ðsÞhzðzÞ þ wv

s ðsÞvðzÞ ð1Þ

unðs; zÞ ¼ wu
nðsÞuðzÞ þ wv

nðsÞvðzÞ þ whz
n ðsÞhzðzÞ þ wv

nðsÞvðzÞ ð2Þ

uzðs; zÞ ¼ whx
z ðsÞhxðzÞ þ why

z ðsÞhyðzÞ þ ww
z ðsÞwðzÞ þ wx

z ðsÞxðzÞ ð3Þ

Note that the subscripts n, s and z denote the directions of the displacement.
The nonvanishing components (wu, wv, whx , why , ww) of the section deformation shape are straightfor-

ward to write:

wu
s ðsiÞ ¼ cos ai; wu

nðsiÞ ¼ � sin ai;

wv
sðsiÞ ¼ sin ai; wv

nðsiÞ ¼ cos ai;

why
z ðsiÞ ¼ �x; whx

z ðsiÞ ¼ y; ww
z ¼ 1

where ai is the angle between the x-axis and the si axis attached to the ith wall. The nonvanishing section
deformations associated with the rotation hðzÞ about the z-axis are

Fig. 1. Geometry of a thin-walled rectangular cross-section (Ni: a generic point on the ith wall to which ONi is normal)

(b1 ¼ b3 ¼ b; b2 ¼ b4 ¼ h).
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whz
s ðsiÞ ¼ rðsiÞ ðrðsiÞ ¼ ri ¼ h=2 for i ¼ 1; 3; b=2 for i ¼ 2; 4Þ

whz
n ðsiÞ ¼ � bi

2
þ si

For the warping deformation xðzÞ, only the axial displacement component is nonvanishing

wx
z ðsiÞ ¼ xðsiÞyðsiÞ ð4Þ

Note that the average axial displacement due to Eq. (4) vanishes.
Following the procedure used in Kim and Kim (1999a), the nonvanishing section deformations corre-

sponding to distortion vðzÞ are shown to be

wv
nðs1Þ ¼ wv

nðs3Þ ¼
bh

b þ h

h
� 4m1ðs1=bÞ3 þ 6m1ðs1=bÞ2 � 2ðm1 � 1Þðs1=bÞ � 1

i

wv
nðs2Þ ¼ wv

nðs4Þ ¼
bh

b þ h
4m2ðs2=hÞ3

h
� 6m2ðs2=hÞ2 þ 2ðm2 � 1Þðs2=hÞ þ 1

i ð5Þ

where

m1 ¼
b
h
; m2 ¼

h
b

The tangential component wv
s of the distortion can be written as

wv
s ðsiÞ ¼

bh
b þ h

ð�1Þi ð6Þ

Using the shell displacements of the section contour defined in Eqs. (1)–(3) one can approximate the
three-dimensional displacements (us, un, uz) for n 6¼ 0 as

Fig. 2. Deformation shapes of a box beam section corresponding to eight degrees of freedom (those depicted in (a–f) are considered in a

standard six-degree-of-freedom beam theory).
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usðn; s; zÞ � usðs; zÞ � n
ounðs; zÞ

os
¼ wu

s ðsÞuðzÞ þ wv
sðsÞvðzÞ þ whz

s ðsÞhzðzÞ þ wv
s ðsÞvðzÞ � n

dwv
nðsÞ
ds

vðzÞ

unðn; s; zÞ � unðs; zÞ ¼ wu
nðsÞuðzÞ þ wv

nðsÞvðzÞ þ whz
n ðsÞhzðzÞ þ wv

nðsÞvðzÞ

uzðn; s; zÞ � uzðs; zÞ ¼ whx
z ðsÞhxðzÞ þ why

z ðsÞhyðzÞ þ ww
z ðsÞwðzÞ þ wx

z ðsÞxðzÞ

ð7Þ

The three-dimensional strain components can be determined from the displacement field given by Eq.
(7):

�zz ¼ ww
z ðsÞ

dwðzÞ
dz

þ whx
z ðsÞ

dhxðzÞ
dz

þ why
z ðsÞ

dhyðzÞ
dz

þ wx
z ðsÞ

dxðzÞ
dz

�zs �
1

2
wu

s ðsÞ
duðzÞ
dz

�
þ wv

sðsÞ
dvðzÞ
dz

þ dwhx
z ðsÞ
ds

hxðzÞ þ
dwhy

z ðsÞ
ds

hyðzÞ þ whz
s ðsÞ

dhzðzÞ
dz

þ dwx
z ðsÞ
ds

xðzÞ

þ wv
s ðsÞ

dvðzÞ
dz

�

�ss ¼ n
d2wv

n

ds2
vðzÞ

ð8Þ

Other strain components are negligible in comparison with these components. We remark that the four
terms in �zs in Eq. (8) become

wu
s ðsÞ

duðzÞ
dz

þ wv
sðsÞ

dvðzÞ
dz

þ dwhx
z ðsÞ
ds

hxðzÞ þ
dwhy

z ðsÞ
ds

hyðzÞ ¼ wu
s ðsÞ

duðzÞ
dz

�
� hyðzÞ

�
þ wv

sðsÞ
dvðzÞ
dz

�
� hxðzÞ

�

where dwhy
z =ds ¼ �wu

s and dwhx
z =ds ¼ �wv

s are used (see Fig. 2). These terms are used to represent the shear
terms when nonuniform bending occurs.

Nonvanishing stress components are determined from the following constitutive relation

rzz ¼ E1 �zzð þ m�ssÞ; rss ¼ E1 �ssð þ m�zzÞ; rsz ¼ 2G�sz ð9Þ

with E1 ¼ E=ð1� m2Þ where E and G are Young’s and shear moduli, respectively and m is Poisson’s ratio.
To derive the present 8-DOF beam theory, the potential energy expressed in three-dimensional quan-

tities will be integrated over the beam cross-section A. Since we will follow the same procedure employed in
Kim and Kim (1999a,b, 2000), the detailed analysis will be omitted here. The final form of the system
potential energy in its one-dimensional form is

P ¼ 1

2
E
Z

½Aw02 þ Ixxh
02
x þ Iyyh

02
y þ Ixxx02 þ 2fIwxw0h0

x þ Iwyw0h0
y þ Iwxw0x0 þ Ixyh

0
xh

0
y þ Ixxh0

xx
0 þ Iyxh0

yx
0g�dz

þ 1

2
G
Z

½b1u02 þ b2v0
2 þ b3h

2
x þ b4h

2
y þ b5h

02
z þ b6x2 þ b7v02 þ 2fb8u0v0 þ b9u0hx þ b10u0hy þ b11u0h0

z

þ b12u0x þ b13u0v0 þ b14v0hx þ b15v0hy þ b16v0h
0
z þ b17v0x þ b18v0v0 þ b19hxhy þ b20hxh

0
z þ b21hxx

þ b22hxv
0 þ b23hxh

0
z þ b24hyx þ b25hyv

0 þ b26h
0
zx þ b27h

0
zv

0 þ b28xv0g�dz

þ 1

2
E
Z

cv2 dz þ
Z

½mxhx þ myhy þ fzw þ Bx þ fxu þ fyv þ mzhz þ Qv�dz ð10Þ
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where ð Þ0 denotes the differentiation with respect to z. Constants b1; . . ., etc. may be found as

A ¼
Z

ðww
z Þ

2
dA; Ixx ¼

Z
y2 dA; Iyy ¼

Z
x2 dA; Ixx ¼

Z
x2 dA

Ixy ¼
Z

�xy dA; Ixx ¼
Z

yxdA; Iyx ¼
Z

�xxdA

b1 ¼
Z

ðwu
s Þ

2
dA; b2 ¼

Z
ðwv

sÞ
2
dA; b3 ¼

Z
dwhx

z

ds

� �2

dA; b4 ¼
Z

dwhy
z

ds

� �2

dA

b5 ¼
Z

ðwhy
z Þ

2
dA; b6 ¼

Z
dwx

z

ds

� �2

dA; b7 ¼
Z

ðwv
z Þ

2
dA; b8 ¼

Z
wu

sw
v
s dA

b9 ¼
Z

wu
s

dwhx
z

ds
dA; b10 ¼

Z
wu

s

dwhy
z

ds
dA; b11 ¼

Z
wu

sw
hz
s dA

b12 ¼
Z

wu
s

dwx
z

ds
dA; b13 ¼

Z
wu

sw
v
s dA; b14 ¼

Z
wv

s

dwhx
z

ds
dA

b15 ¼
Z

wv
s

dwhy
z

ds
dA; b16 ¼

Z
wv

sw
hz
s dA; b17 ¼

Z
wv

s

dwx
z

ds
dA

b18 ¼
Z

wv
sw

v
s dA; b19 ¼

Z
dwhx

z

ds
dwhy

z

ds
dA; b20 ¼

Z
dwhx

z

ds
whz

s dA

b21 ¼
Z

dwhx
z

ds
dwx

z

ds
dA; b22 ¼

Z
dwhx

z

ds
wv

s ; b23 ¼
Z

dwhy
z

ds
whz

s dA

b24 ¼
Z

dwhy
z

ds
dwx

z

ds
dA; b25 ¼

Z
dwhy

z

ds
wv

s dA; b26 ¼
Z

whz
s

dwx
z

ds
dA

b27 ¼
Z

whz
s wv

s dA; b28 ¼
Z

dwx
z

ds
wv

s dA; c ¼
Z

n
d2wv

n

ds2

� �2

dA

ð11Þ

One-dimensional load terms, such as mx, are defined as

mx ¼
Z

pzw
hx
z dA; my ¼

Z
pzw

hy
z dA; fz ¼

Z
pzw

w
z dA; B ¼

Z
pzw

x
z dA

fx ¼
Z

px dA; fy ¼
Z

py dA; mz ¼
Z

psw
hz
s dA; Q ¼

Z
psw

v
s dA

ð12Þ

where pz, px, py and ps denote z, x, y and s directional distributive loads, respectively. The symbols B and Q
in Eq. (12) define the bimoment and the transverse bimoment, respectively (see Vlasov, 1961).

In the case of vibration problems, the Lagrangian L ¼ T � P is used where the kinetic energy T is given
by

T ¼ 1

2

Z
½u2s þ u2n þ u2z �qdsdndz

¼ 1

2

Z
b1u2
�

þ b2v2 þ b5h
2
z þ b7v2 þ d0v2 þ 2fb8uv þ b11uhz þ b13uv þ b16vhz þ b18vv þ b27hzvgmdz

þ 1

2

Z
d1u2
�

þ d2v2 þ d3h
2
z þ d4v2 þ 2fd5uv þ d6uhz þ d7uv þ d8vhz þ d9vv þ d10hzvg�mdz

þ 1

2

Z
½Ixxh

2
x þ Iyyh

2
y þ Aw2 þ Ixxx2�mdz ð13Þ

where q and m denote the mass density and mass per unit length, respectively. In Eq. (13), d1, etc. are
defined as
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d0 ¼
Z

n
dwv

n

ds

� �2

dA; d1 ¼
Z

ðwu
nÞ

2
dA; d2 ¼

Z
ðwv

nÞ
2
dA

d3 ¼
Z

ðwhz
n Þ

2
dA; d4 ¼

Z
ðwv

nÞ
2
dA; d5 ¼

Z
wu

nw
v
n dA

d6 ¼
Z

wu
nw

hz
n dA; d7 ¼

Z
wu

nw
v
n dA; d8 ¼

Z
wv

nw
hz
n dA

d9 ¼
Z

wv
nw

v
n dA; d10 ¼

Z
whz

n wv
n dA

ð14Þ

3. Joint modeling techniques

To develop an accurate efficient model of a T-joint structure, 8-DOF beam elements are used to model
three thin-walled box beams adjacent to the joint region defined in Fig. 3. The effects of the size of the joint
region will be also numerically investigated in the next section. We will consider two approaches to model
the joint region. The first approach, which will be discussed in Section 3.1, is to model it with plate elements
and match dissimilar elements at the interface using a pseudo-inverse matrix. The second approach is to
generate a joint element from the plate element model of the joint region in such a way that its degrees of
freedom are consistent with those of 8-DOF beams.

Unlike typical modeling techniques using 6-DOF beam elements for the adjacent box beams, the use of
8-DOF beam elements having the additional degrees of freedom for warping and distortion requires careful
considerations of the kinematic relations and the equilibrium consideration.

Fig. 3. A T-joint thin-walled structure.

J.H. Kim et al. / International Journal of Solids and Structures 39 (2002) 2893–2909 2899



3.1. The joint region modeled by plate elements

The joint region in Fig. 3 is modeled by plate elements and its adjacent box beams by 8-DOF beams. The
main task is now to match the dissimilar elements on the interfaces. The number of degrees of freedom used
to represent the interfacing part of the joint region is

Nj 
 Nd

where Nj is the total number of nodes of plate elements at the jth interface (j ¼ I, II, III; see Fig. 3). The
number of nodal degrees of freedom for the interface plate element is denoted by Nd.

Though plate elements have rotational degrees, only three translational degrees of freedom are con-
sidered at the interface and thus Nd ¼ 3, here (see Kim, 1997). Accordingly, we consider the following
displacement vector representing the interface degrees of freedom for the region modeled by plates (see Fig.
4).

Dj ¼ Uj
x1;U

j
y1;U

j
z1; . . . ;U

j
xNj ;U

j
yNj ;U

j
zNj

	 
T

ð15Þ

The subscripts x, y and z denote the directions of displacement components and the superscript j represents
the interface locations. The interface degrees of freedom for the thin-walled beam structures are denoted by

dj ¼ uj; vj;wj; hj
x; h

j
y ; h

j
z;x

j; vj
	 
T

ð16Þ

One can determine a transformation matrix Tj relating d
j and Dj as

Dj ¼ Tjd
j ð17Þ

The detailed expression for Tj will be given later. If the inverse matrix of Tj exists, d
j can be easily de-

termined from Dj.

dj ¼ T�1
j D

j ð18Þ

Since the matrix Tj is not a square matrix, the direct inverse matrix T
�1
j cannot be obtained. To resolve this

matter, we propose to use the pseudo-inverse matrix Tþ
j such that

Fig. 4. Plate finite element model of a T-joint thin-walled structure.
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dj ¼ Tþ
j D

j ð19Þ

where Tþ
j can be determined as (see, e.g., Bjerhammar, 1973)

Tþ
j ¼ ðTT

j TjÞ�1TT
j

Next, we can derive the relation between the force vector fj of the beam elements and the force vector Fj

of plate elements at the interface. By imposing the condition that the virtual work done by Fj through the
virtual displacement dDj must be equal to the virtual work done by fj through ddj, the following equation is
obtained:

FjT dDj ¼ fjT ddj ð20Þ

Substituting Eq. (19) into Eq. (20) yields the following relationship between fj and Fj.

Fj ¼ ðTþ
j Þ

T
fj ð21Þ

fj ¼ TT
j F

j ð22Þ

Eqs. (19)–(22) will be used to match interface conditions.
To find the governing equations for a whole T-joint structure, we first write the equations of motion for

the joint region modeled by plate elements:

Mii Mij

Mji Mjj

� �
�

€DDi

€DDj

� �
þ Kii Kij

Kji Kjj

� �
� Di

Dj

� �
¼ Fi

Fj

� �
ð23Þ

where K and M denote the stiffness and mass matrices of the joint region, respectively and (¨) denotes the
second derivatives with respect to time. In Eq. (23), the superscript i denotes internal quantities that are not
associated with the joint interface. Likewise, the governing equations of motion for adjacent box beams are
written as

mii mij

mji mjj

� �
�

€ddi

€ddj

� �
þ kii kij

kji kjj

� �
� di

dj

� �
¼ f i

fj

� �
ð24Þ

where k and m denote the stiffness and mass matrices of the box beams, respectively.
Note that the number of degrees of freedom for dj is always smaller than the number of the degrees of

freedom for Dj. Therefore it is convenient to express Dj in term of dj before combining Eqs. (23) and (24)
using

Di

Dj

� �
¼ T½ � Di

dj

� �
ð25Þ

where

T½ � ¼ I 0
0 Tj

� �
; I ¼ identity matrix

Substituting Eq. (25) into Eq. (23) and pre-multiplying TT, the following equation is obtained.

Mii MijTj

TT
j Mji TT

j MjjTj

� �
�

€DDi

€ddj

� �
þ Kii KijTj

TT
j Kji TT

j KjjTj

� �
� Di

dj

� �
¼ Fi

fj
s

� �
ð26Þ

where fj
s ¼ TT

j F
j. Combining Eqs. (24) and (26) and setting that fj þ fj

s ¼ ~ffj, the final equation of motion of
the entire T-joint structure can be obtained as
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Mii MijTj 0
TT

j Mji TT
j MjjTj þmjj mji

0 mij mii

2
4

3
5 �

€DDi

€ddj

€ddi

8<
:

9=
;þ

Kii KijTj 0
TT

j Kji TT
j KjjTj þ kjj kji

0 kij kii

2
4

3
5 �

Di

dj

di

8<
:

9=
; ¼

Fi

~ffj

f i

8<
:

9=
; ð27Þ

Note that mij ¼ mji ðMij ¼MjiÞ and kij ¼ kji ðKij ¼ KjiÞ.

3.1.1. Derivation of the transformation matrix Tj (j ¼ I, II and III)
To complete the governing Eq. (27), the transformation matrix Tj should be determined. Here, we derive

the transformation matrix TI since TII and TIII can be equally handled.
At Wall 1 of Interface I for 06 s1 6 b1 (see Fig. 4), the three displacement components at the ith node of

the joint region (modeled by plate elements) can be determined if the 8-DOF beam displacements
ðu; v;w; hx; hy ; hz; v;xÞ are known:

U I
xi
¼ u þ h

2
hz �

bh
b þ h

v

U I
yi
¼ v þ xihz þ

bh
b þ h

�
� 4b

h
xi

b

	 
3

þ b
h

�
þ 2

�
xi

b

	 
�
v

U I
zi
¼ w � h

2
hx � xihy � xi

h
2

x

i ¼ 1; . . . ;N I
1

ð28Þ

where xi and yi denote the x and y coordinates measured from the ith node. The number of the nodes at
Wall 1 of Interface I is denoted by N I

1.
Similarly for Wall 2 of the Interface I ð06 s2 6 b2Þ, we find

U I
xi
¼ u � yihz þ

bh
b þ h

4h
b

yi

h

	 
3
�

� h
b

�
þ 2

�
yi

h

	 
�
v

U I
yi
¼ v þ b

2
hz þ

bh
b þ h

v

U I
zi
¼ w þ yihx �

b
2

hy þ yi
b
2

x

i ¼ 1þ N I
1; . . . ;N

I
2

ð29Þ

where N I
2 is the number of the nodes for Wall 2.

Repeating the same analysis for Walls 3 and 4 yields the following results: for Wall 3

U I
xi
¼ u � h

2
hz þ

bh
b þ h

v

U I
yi
¼ v þ xihz þ

bh
b þ h

4b
h

xi

b

	 
3
�

� b
h

�
þ 2

�
xi

b

	 
�
v

U I
zi
¼ w þ h

2
hx � xihy þ xi

h
2

x

i ¼ 1þ N I
2; . . . ;N

I
3

ð30Þ
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for Wall 4

U I
xi
¼ u � yihz þ

bh
b þ h

�
� 4h

b
yi

h

	 
3

þ h
b

�
þ 2

�
yi

h

	 
�
v

U I
yi
¼ v � b

2
hz �

bh
b þ h

v

U I
zi
¼ w þ yihx þ

b
2

hy � yi
b
2

x

i ¼ 1þ N I
3; . . . ;N

I
4

ð31Þ

where N I
3 and N I

4 are the numbers of nodes in Walls 3 and 4, respectively. Writing Eqs. (28)–(31) into matrix
form gives the components of the transformation matrix TI, which are explicitly written in Appendix A.

3.2. The joint region model by a consistent joint element

In this section, we present a method to model the joint region by a joint element having degrees of
freedom consistent with the 8-DOF beam theory. This section describes the procedure to estimate the joint
element stiffness from the plate model of the joint region.

The joint element stiffness KJ may be defined in the following equation

KJ � d ¼ f ð32Þ
where d and f denote the displacement and force vectors on three Interfaces I, II and III. Denoting dj and fj

as those defined on Interface j ðj ¼ I; II; IIIÞ, the vectors d and f can be written as

d ¼ dI dII dIII
� �T

f ¼ fI fII fIII
� �T

The components of dj and fj may be found in the following definition of dj and fj.

dj ¼ uj vj wj hj
x hj

y hj
z xj vj

n oT

fj ¼ f j
x f j

y f j
z mj

x mj
y mj

z Bj Qj
� �T ðj ¼ I; II; IIIÞ

In the T-joint in consideration, the size of the resulting stiffness matrix of the joint element is 24
 24.
To determine the joint element stiffness matrix from the plate model of the joint region, the displacement

field consistent with the 8-DOF beam theory is prescribed at the interfaces. The elements of the stiffness
matrix may be obtained by calculating the reaction forces at the Interfaces I, II, III subjected to prescribed
displacements at the interfaces.

To determine the components of the first column of KJ, we impose a unit displacement along the x
direction on Interface I while constraining all other displacement degrees at the interfaces:

uI ¼ 1; vI ¼ wI ¼ hIx ¼ hIy ¼ hIz ¼ xI ¼ vI ¼ 0 ð33aÞ

dII ¼ dIII ¼ 0 ð33bÞ
The displacement field by plate elements corresponding to Eqs. (33a) and (33b) can be written as

U I
xi ¼ 1; U I

yi ¼ U I
zi ¼ HI

xi ¼ HI
yi ¼ Hzi ¼ 0 ði ¼ 1; . . . ;N I

4Þ ð34aÞ

DII ¼ DIII ¼ 0 ð34bÞ
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Table 1 expresses the displacement condition imposed on Interface I, consistent with the 8-DOF beam
theory. In Table 1, ðwvÞxi

and ðwvÞyi
represent the components of the distortion function wv in the xi and yi

directions, respectively. In order to find the remaining components KJ, exactly the same procedure is re-
peated to impose displacement conditions on Interfaces II and III.

Once the displacement conditions are given on the interfaces, the reaction forces FI, FII and FIII are
computed by using the plate-element model of the joint region. These forces are then converted to calculate
fI, fII and fIII that are consistent with the 8-DOF beam theory. We use the following relations to convert FI

to fI:

f I
x ¼

XN I
4

i¼1
F I

xi ð35aÞ

f I
y ¼

XN I
4

i¼1
F I

yi ð35bÞ

f I
z ¼

XN I
4

i¼1
N I

zi ð35cÞ

mI
x ¼

XN I
4

i¼1
F I

zi 
 yi þ M I
xi ð35dÞ

mI
y ¼

XN I
4

i¼1
F I

zi 
 ð�xiÞ þ M I
yi ð35eÞ

mI
z ¼

XN I
4

i¼1
F I

si 
 ri þ M I
zi ð35fÞ

BI ¼
XN I

4

i¼1
F I

zi 
 xi 
 yi ð35gÞ

QI ¼
XN I

4

i¼1
F I

si

�

 wv

s ðsiÞ
�
� Mzi ð35hÞ

Table 1

Displacement field imposing on the interface (j ¼ I)

No. uI vI wI hIx hIy hIz xI vI U I
xi U I

yi U I
zi HI

xi HI
yi HI

zi

1 1 0 0 0 0 0 0 0 1 0 0 0 0 0

2 0 1 0 0 0 0 0 0 0 1 0 0 0 0

3 0 0 1 0 0 0 0 0 0 0 1 0 0 0

4 0 0 0 1 0 0 0 0 0 0 yi 1 Free Free

5 0 0 0 0 1 0 0 0 0 0 �xi Free 1 Free

6 0 0 0 0 0 1 0 0 �yi xi 0 Free Free 1

7 0 0 0 0 0 0 1 0 0 0 xi 
 yi Free Free Free

8 0 0 0 0 0 0 0 1 ðwvÞxi
ðwvÞyi

0 0 0 0
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In Eq. (35f), F I
si stands for the force acting along the tangential direction si on Interface I (see Fig. 1 for the

positive tangential directions si). Similar definitions hold for quantities associated with other interfaces.
Once all components of fI, fII, and fIII are determined, the components of KJ are simply found as

ðKJÞ1;k ¼ f I
x ; ðKJÞ2;k ¼ f I

y ; ðKJÞ3;k ¼ f I
z ; . . . ; ðKJÞ24;k ¼ f III

v ðfor d ¼ 0 except dk 6¼ 0Þ

For a dynamic analysis, we construct the mass matrixMJ of the joint element using the Guyan reduction
method (see Guyan, 1965). Since the Guyan method is well known, the detailed procedure to constructMJ

will not be given here. However, we remark that the mass components of the joint region are transferred to
those defined on the interfaces. The transferred mass components are then converted to those consistent
with the 8-DOF beam theory (see Kim, 1998).

4. Numerical results

4.1. Case study 1: effects of the joint region size

We perform the vibration analysis for a T-joint thin-walled structure shown in Fig. 3 (L ¼ 475 mm,
b ¼ h ¼ 50 mm, t ¼ 1 mm, Young’s modulus E ¼ 2
 1011 N/m3, mass density q ¼ 7:8
 10�6 kg/mm3).
Table 2 shows the eigenfrequencies of a freely supported T-joint for varying values of the size Lj of the joint
region. ‘Plate’ denotes the results by the detailed plate-element analysis. ‘Plateþ 8-DOF beam’ denotes the
model using plate elements for the joint region and 8-DOF beam elements for the box beams. Observe that
the present results are little affected by the size Lj. However, the existing literature (see, e.g., Kim et al.,
1995) reports inconsistency when conventional six-degree-of-freedom beam elements are employed to
model box beams.

4.2. Case study 2: performance of the present approaches

Table 3 presents the eigenfrequencies for the same T-joint used in Case study 1. In Table 3, the eigen-
frequencies predicted by four different methods are compared. ‘Plateþ 6-DOF beam’ represents the model

Table 2

Effects of the size Lj of the joint region for Case study 1 (Ne: number of the finite elements)

Mode no. Plate ðNe ¼ 1872Þ (Hz) Plateþ 8-DOF beam

Lj ¼ 25 mm (Hz)

Plateþ 8-DOF beam

Lj ¼ 50 mm (Hz)

Plateþ 8-DOF beam

Lj ¼ 75 mm (Hz)

1 212.2 224.7 223.3 223.4

2 277.5 287.0 286.1 286.1

3 292.1 288.3 288.6 289.6

4 300.2 293.1 293.6 296.1

Table 3

Eigenfrequencies of a T-joint thin-walled structure obtained by various modeling techniques (Case study 2)

Mode no. Plate (Ne ¼ 1872) (Hz) Plateþ 6-DOF beams

Lj ¼ 50 mm (Hz)

Plateþ 8-DOF beams

Lj ¼ 50 mm (Hz)

Jointþ 8-DOF beams

Lj ¼ 25 mm (Hz)

1 212.2 223.2 223.3 217

2 277.5 285.6 286.1 288

3 292.1 N/A 288.6 294

4 300.2 N/A 293.6 353
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utilizing plate elements for the joint region and conventional six-degree-of-freedom beam elements for the
box beams. ‘Joint þ 8-DOF beam’ is the model using the joint element (KJ,MJ) for the joint region and 8-
DOF beam elements for the box beams. The number of the 8-DOF beam elements used to model the three
adjacent box beams is 51. The element used here is similar to that developed by Kim and Kim (1999a,b).
The convergence of results has been checked numerically.

Table 3 shows that ‘Plateþ 6-DOF beam’ cannot predict the third and fourth eigenmodes although their
eigenfrequencies are low enough to be close to the second lowest eigenfrequency. However, the present
approaches (‘Plateþ 8-DOF beam’, ‘Joint þ 8-DOF beam’) can predict well all of the lowest four eigen-
modes. It is observed that the third and fourth mode shapes have significant warping and distortional
deformations, which are well seen in Figs. 5 and 6. We also remark that the distortional deformations
significant particularly near the joint region are well captured by the present approaches.

Fig. 5. The third eigenmode of the T-joint modeled (a) by plate elements and (b) by the combination of plate and 8-DOF beam el-

ements.
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5. Conclusions

We have proposed new efficient modeling techniques for T-joint thin-walled structures based on the 8-
DOF beam theory. The key essence of the present method was (i) to use beam theories that facilitate
early designs, but (ii) to use an 8-DOF beam theory for accurate, reliable results. This work showed that
the significant contributions of warping and distortional deformations near the joint region of a T-joint
can be well accommodated by the present 8-DOF beam theory. Without the present beam theory, it is
not possible to predict important low-frequency vibration modes only with conventional beam theories.
The use of additional degrees of freedom for warping and distortion is well compensated by greatly
improved results. Though this work is limited to a simple T-joint structure, the present finding as well

Fig. 6. The fourth eigenmode of the T-joint modeled (a) by plate elements and (b) the combination of plate and 8-DOF beam elements.
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as analysis can be carried over to the analysis of joints consisting of arbitrarily-sectioned thin-walled
beams.

Appendix A
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